| CONTRACTOR OF | สาขาวิชา | อิเล็กทรอนิกส์                     | <ul> <li>ใบเนื้อหาการเรียนรู้ที่ 1<sup>-</sup></li> </ul> |         |
|---------------|----------|------------------------------------|-----------------------------------------------------------|---------|
|               | ชื่อวิชา | หุ่นยนต์เบื้องต้น                  |                                                           |         |
|               | รหัสวิชา | 2105-2121                          |                                                           | หน้าที่ |
|               | ชื่องาน  | งานทดสอบและควบคุมหุ่นยนต์อัตโนมัติ |                                                           | 158     |

## งานที่ 17

## งานทดสอบและควบคุมหุ่นยนต์อัตโนมัติ

### จุดประสงค์ทั่วไป

1. เพื่อให้มีเรียนมีความรู้ความเข้าใจเกี่ยวกับงานทดสอบและควบคุมหุ่นยนต์อัตโนมัติ

## **จุดประสงค์เชิงพฤติกรรม** (เพื่อให้ผู้เรียนสามารถ)

- 1. อธิบายขั้นตอนการทดสอบและควบคุมหุ่นยนต์อัตโนมัติได้อย่างถูกต้องตามขั้นตอน
- 2. บอกหลักการงานทดสอบและควบคุมหุ่นยนต์อัตโนมัติได้อย่างถูกต้อง

# ทฤษฎีการเรียนรู้การประกอบหุ่นยนต์อัตโนมัติ

17.1 ตัวอย่างการทดสอบและควบคุมหุ่นยนต์เคลื่อนที่ตามเส้นอัตโนมัติจากวงจรอิเล็กทรอนิกส์ พื้นฐาน หุ่นยนต์ iBEAM โดยมีขั้นตอนการปฏิบัติดังนี้

# 17.1.1 การทดสอบเบื้องต้น

 เมื่อเปิดสวิตช์ LED สีเขียวบนแผงวงจรควบคุมติดสว่างหากไม่ ติดอาจต่อสายไฟ เลี้ยงจากกระบะถ่านผิดขั้วหรือต่อสายไม่แน่นทำการ แก้ไขให้ถูกต้อง

 2) วางหุ่นยนต์บนพื้นขาว หมุนตัวต้านทานปรับค่าได้ทั้งสองตัวบน แผงวงจรควบคุม ในทิศทางตามเข็มนาฬิกาจนสุด หากเดิมมอเตอร์ทำงานอยู่จะต้องหยุดหมุนในที่สุด LED สีแดงที่ใช้ แสดงสถานะการทำงานของ มอเตอร์ต้องดับ

 ยกหุ่นยนต์ขึ้นเหนือพื้น ปรับตัวต้านทานปรับค่าได้ทั้งสองตัวบน แผงวงจรควบคุม ในทิศทางทวนเข็มนาฬิกาจนสุด มอเตอร์ทั้งสองตัวต้องหมุนไปและ LED สีแดงติดสว่าง ถ้าไม่ เป็นตามที่กล่าวต้องตรวจสอบการ เชื่อมต่อและติดตั้งแผงวงจรตรวจจับเส้น ZX-03 อีกครั้ง หากทุก อย่างเรียบร้อยจะเข้าสู่การทดสอบการเคลื่อนที่ต่อไป





| CONTRACTOR OF | สาขาวิชา | อิเล็กทรอนิกส์                     | <ul> <li>ใบเนื้อหาการเรียนรู้ที่ 17</li> </ul> |         |
|---------------|----------|------------------------------------|------------------------------------------------|---------|
|               | ชื่อวิชา | หุ่นยนต์เบื้องต้น                  |                                                |         |
|               | รหัสวิชา | 2105-2121                          |                                                | หน้าที่ |
|               | ชื่องาน  | งานทดสอบและควบคุมหุ่นยนต์อัตโนมัติ |                                                | 159     |

#### 17.1.2 สร้างสนามทดสอบ

สนามทดสอบอ้างอิงมีพื้นสนามเป็นสีขาวและเส้นเป็นสีดำอาจทำจากแผ่นพลาสติก ลูกฟูก (หรือชื่อเรียกกันทั่วไปว่าแผ่นฟิวเจอร์บอร์ด) มาติดเทปสีดำหรือติดเทปลงบนพื้นโต๊ะหรือ กระดานสีขาวก็ได้ โดยเทปสีดำที่ใช้แนะนำให้ใช้เทปพันสายไฟสีดำยี่ห้อ 3M ขนาดกว้าง 1 นิ้ว จำนวน 2 ม้วน เนื่องจากมีความยืดหยุ่นสูงติดเป็นเส้นโค้งได้ดี



รูปที่ 17.2 เตรียมสร้างสนามทดสอบ

# 17.1.3 การปรับแต่งเพื่อให้หุ่นยนต์เคลื่อนที่ตามเส้นสีดำ

 1) วางหุ่นยนต์บนพื้นสีขาว จากนั้นยกหุ่นยนต์ขึ้นจากพื้นประมาณ 3 ซม.ปรับตัว ต้านทานปรับค่าได้จนกระทั่งมอเตอร์หยุดหมุน

2) วางหุ่นยนต์ลงบนสนามให้คร่อมเส้น หุ่นยนต์จะเริ่มการเคลื่อนที่ ตามเส้น ดังรูปที่

17.3



รูปที่ 17.3 หุ่นยนต์ iBEAM เคลื่อนที่ตามเส้น

|  | สาขาวิชา | อิเล็กทรอนิกส์                     | <ul> <li>ใบเนื้อหาการเรียนรู้ที่ 1<sup>-</sup></li> </ul> |         |
|--|----------|------------------------------------|-----------------------------------------------------------|---------|
|  | ชื่อวิชา | หุ่นยนต์เบื้องต้น                  |                                                           |         |
|  | รหัสวิชา | 2105-2121                          |                                                           | หน้าที่ |
|  | ชื่องาน  | งานทดสอบและควบคุมหุ่นยนต์อัตโนมัติ |                                                           | 160     |

#### 17.1.4 เงื่อนไขในการเคลื่อนที่ของหุ่นนต์ iBEAM

พิจารณารูปที่ 17.4 ประกอบ หากแผงวงจรตรวจจับเส้นทางซ้ายและขวาตรวจจับ พบพื้นสีขาว นั่นคือหุ่นยนต์น่าจะคร่อมเส้นอยู่แผงวงจรตรวจจับเส้นจะให้ แรงดันสูงส่งไปยังไอซีออป แอมป์บนแผงวงจรควบคุม เมื่อเปรียบเทียบแล้วสูงกว่า แรงดันอ้างอิง ไอซีออปแอมป์ทั้งสองชุดจะให้ เอาต์พุตเป็นแรงดันสูงเพื่อขับมอเตอร์ ให้เคลื่อนที่ตรงไปข้างหน้าดังรูปที่ 17.5



รูปที่ 17.4 ลักษณะการทำงานของ หุ่นยนต์ iBEAM เมื่อเคลื่อนที่ คร่อมเส้นไปข้างหน้า เมื่อใดก็ตามที่แผงวงจรตรวจจับเส้นด้านซ้ายพบสีดำส่วนแผงวงจรตรวจจับเส้น ด้านขวาพบพื้นสีขาวแผงวงจรตรวจจับเส้นทางซ้ายจะให้แรงดันต่ำกลับมา ทำให้แรงดันอ้างอิงของ แผงวงจรมีค่าสูงกว่า ไอซีออปแอมป์ของชุดนั้นๆ จะให้แรง ดันเป็น 0 ออกไปที่เอาต์พุตมอเตอร์จึง หยุดหมุนทันที ส่วนไอซีออปแอปม์อีกตัว หนึ่งยังคงขับมอเตอร์ต่อไป เนื่องจากแผงวงจรตรวจจับ เส้นทางขวาตรวจจับพบพื้นสีขาวส่งผลให้หุ่นยนต์ค่อยๆ เลี้ยวซ้าย ดังรูปที่ 17.5



รูปที่ 17.5 การทำงานของหุ่นยนต์ iBEAM เมื่อเคลื่อนที่ตามเส้นไปทางซ้าย

|           | สาขาวิชา | อิเล็กทรอนิกส์                     | - ใบเนื้อหาการเรียนรู้ที่ 17 |         |
|-----------|----------|------------------------------------|------------------------------|---------|
|           | ชื่อวิชา | หุ่นยนต์เบื้องต้น                  |                              |         |
|           | รหัสวิชา | 2105-2121                          |                              | หน้าที่ |
| TECHNICAL | ชื่องาน  | งานทดสอบและควบคุมหุ่นยนต์อัตโนมัติ |                              | 161     |

ในทางตรงข้ามหากแผงวงจรตรวจจับเส้นด้านซ้ายพบพื้นสีขาว ส่วนแผงวงจร ตรวจจับเส้นด้านขวาพบเส้นสีดำ แผงวงจรตรวจจับเส้นทางขวาจะให้แรงดันต่ำกลับมาทำให้แรงดัน อ้างอิงของแผงวงจรมีค่าสูงกว่าไอซีออปแอมป์ของชุดนั้นๆ จะให้แรงดันเป็น 0 ออกไปที่เอาต์พุต มอเตอร์ทางขวาจึงหยุดหมุนทันที ส่วนไอซีออปแอมป์อีกตัวหนึ่งที่ควบคุมมอเตอร์ทางซ้ายยังคง ทำงานและขับมอเตอร์ต่อ ไปเนื่องจากแผงวงจรตรวจจับเส้นทางซ้ายตรวจจับพบพื้นสีขาวส่งผลให้ หุ่นยนต์ค่อยๆ เลี้ยวขวาดังรูปที่ 17.6



รูปที่ 17.6 การทำงานของหุ่นยนต์ iBEAM เมื่อเคลื่อนที่ตามเส้นไปทางขวา หุ่นยนต์ iBEAM จะไม่เคลื่อนที่หากแผงวงจรตรวจจับเส้นทั้งสองดานตรวจ จับพบ เส้นหรือพื้นสีดำ หุ่นยนต์ที่สร้างขึ้นตามแนวคิดของ BEAM มีเสน่ห์และให้ความรู้ที่เป็นประโยชน์ โดยเฉพาะอย่างยิ่งในด้านการทำงานขั้นพื้นฐานของวงจรอิเล็กทรอนิกส์ที่เข้าใจได้ง่ายและสามารถต่อ ยอดไปยังวงจรควบคุมในขั้นที่สูงขึ้นได้ โดยยังไม่ต้องทำความเข้าใจในเรื่องของโปรแกรมควบคุม สำหรับหุ่นยนต์ iBEAM ยังให้ความสนุกได้ด้วย หากนำมาแข่งขันเคลื่อนที่ตามเส้น ที่มีความคดเคี้ยวและโค้งไป-มา (แต่ต้องไม่มีเส้นตัดกัน) หุ่นยนต์ของใครสามารถเคลื่อนที่จาก จุดเริ่มต้นจนถึง เส้นชัยโดยไม่หลุดออกจากเส้นจะเป็นผู้ชนะ

ที่มา : https://issuu.com/innovativeexperiment/docs/ibeam

### 17.2 ตัวอย่างการทดสอบและควบคุมหุ่นยนต์ POP-BOT XT robot kit เพื่อการขับเคลื่อน หุ่นยนต์ POP-BOT XT เบื้องต้น

#### กิจกรรมที่ 1 ควบคุมให้หุ่นยนต์ POP-BOT XT เคลื่อนที่ไปข้างหน้าสลับถอยหลัง

เปิดโปรแกรม Arduino IDE เพื่อใช้ในการเขียนโปรแกรมจากรูปที่ 17.7 จากนั้นทำ การคอมไพล์แล้วอัปโหลดไปยังหุ่นยนต์ POP-BOT XT จากนั้นปลดสาย USB ออก นำหุ่นยนต์มาวาง ที่พื้น เปิดสวิตช์จ่ายไฟ สังเกตการณ์ทำงานของหุ่นยนต์

| CONTRACTOR OF | สาขาวิชา | อิเล็กทรอนิกส์                     | - ใบเนื้อหาการเรียนรู้ที่ 17 |         |
|---------------|----------|------------------------------------|------------------------------|---------|
|               | ชื่อวิชา | หุ่นยนต์เบื้องต้น                  |                              |         |
|               | รหัสวิชา | 2105-2121                          |                              | หน้าที่ |
|               | ชื่องาน  | งานทดสอบและควบคุมหุ่นยนต์อัตโนมัติ |                              | 162     |

หลังจากเปิดสวิตซ์เพื่อจ่ายไฟให้หุ่นยนต์ทำงาน หุ่นยนต์จะเริ่มเคลื่อนที่ทันที โดย เริ่มเคลื่อนที่ไปข้างหน้า จะสังเกตเห็นว่า LED ที่ตำแหน่งมอเตอร์ทั้งคู่ติดเป็นสีเขียว จากนั้นอีก 1 วินาที LED จะเปลี่ยนเป็นสีแดง ให้ดูทิศทางการเคลื่อนที่ของหุ่นยนต์ว่าถูกต้องหรือไม่ ถ้าหุ่นยนต์ เคลื่อนที่ไม่ถูกต้องให้สลับสายของมอเตอร์จนหุ่นยนต์เคลื่อนที่ได้ถูกต้อง



รูปที่ 17.7 โปรแกรมภาษา C ของ Arduino สำหรับทดสอบการขับเคลื่อนหุ่นยนต์ POP-BOT XT ให้ เคลื่อนที่ไปข้างหน้าและถอยหลังสลับกันอย่างต่อเนื่อง

### กิจกรรมที่ 2 ควบคุมหุ่นยนต์เคลื่อนที่เป็นวงกลม

โปรแกรมจากรูปที่ 17.8 เป็นการขับเคลื่อนหุ่นยนต์โดยกกำหนดค่าการจ่ายกำลัง ให้กับล้อแต่ละล้อไม่เท่ากัน ส่งผลให้หุ่นยนต์เคลื่อนที่เป็นวงกลม นอกจากนี้ในโปรแกรมยังเพิ่มเติม คำสั่งตรวจสอบการกดสวิตซ์เพื่อหยุดการทำงานของหุ่นยนต์ด้วย ถ้าหากกดสวิตซ์ OK บนบอร์ด ควบคุมหุ่นยนต์จะหยุดการทำงาน



รูปที่ 17.8 โปรแกรมภาษา C ของ Arduino สำหรับทดสอบการขับเคลื่อนหุ่นยนต์ POP-BOT XT ให้ เคลื่อนที่เป็นวงกลม

ที่มา : https://issuu.com/innovativeexperiment/docs/pop-bot\_xt\_th