หน่วยที่ 7 การขับโหลดไฟฟ้ากระแสสูงและการเชื่อมต่ออุปกรณ์ภายนอกด้วย ARDUINO

สาระสำคัญ

หนึ่งในการประยุกต์ใช้งานระบบควบคุมอัตโนมัติ คือการควบคุมอุปกรณ์ที่มีความต้องการกระแสไฟฟ้า และแรงดันไฟฟ้าสูง เช่นหลอดไฟ มอเตอร์ ขดลวดเคลื่อนที่ หรือโซลินอยด์ ในขณะที่ไมโครคอนโทรลเลอร์สามารถขับ กระแสไฟฟ้าทางเอาต์พุตไม่สูง คือประมาณ +3 หรือ +5V 20mA ดังนั้นจึงต้องมีการเรียนรู้ถึงแนวทางในการนำ ไมโครคอนโทรลเลอร์ไปขับอุปกรณ์ที่ต้องการพลังงานไฟฟ้าสูง อุปกรณ์ที่นิยมนำมาใช้ในการขับโหลดกระแสไฟฟ้าสูง ร่วมกับไมโครคอนโทรลเลอร์คือรีเลย์ (Relay) รีเลย์ทำหน้าที่เป็นสวิตช์กระแสไฟฟ้าสูง

<mark>เนื้อหาสาระการเรียนรู้</mark>

- 7.1 ความรู้เบื้องต้นเกี่ยวกับรีเลย์
- 7.2 วงจรขับรีเลย์
- 7.3 การเชื่อมต่ออุปกรณ์ภายนอกด้วยบอร์ดขับรีเลย์
- 7.4 การใช้งาน Arduino กับบอร์ดขับรีเลย์ 4 ช่อง

จุดประสงค์การเรียนรู้

จุดประสงค์ทั่วไป

1. เพื่อให้มีความรู้ความเข้าใจเกี่ยวกับการขับโหลดไฟฟ้ากระแสสูงและการเชื่อมต่ออุปกรณ์ภายนอก ด้วย Arduino

2. เพื่อให้สามารถนำความรู้ไปประยุกต์ใช้ในการเขียนโปรแกรมกำหนดการทำงานด้วย Arduino

3. เพื่อให้ตระหนักถึงความสำคัญของการขับโหลดไฟฟ้ากระแสสูงและการเชื่อมต่ออุปกรณ์ภายนอกด้วย Arduino

จุดประสงค์เชิงพฤติกรรม

- 1. อธิบายความรู้เบื้องต้นเกี่ยวกับรีเลย์ได้
- 2. ต่อวงจรขับรีเลย์ได้
- 3. เชื่อมต่ออุปกรณ์ภายนอกด้วยบอร์ดขับรีเลย์ได้
- 4. ควบคุมอุปกรณ์ภายนอกด้วยบอร์ดขับรีเลย์ได้
- 5. ใช้งาน Arduino กับบอร์ดขับรีเลย์ 4 ช่องได้

แบบทดสอบหลังเรียน หน่วยที่ 7

เรื่อง การขับโหลดไฟฟ้ากระแสสูงและการเชื่อมต่ออุปกรณ์ภายนอกด้วย Arduino

เรื่อง	การขับโหลดไฟฟ้ากระแสสูงและการเชื่อมต่ออุปกรณ์ภายนอกด้วย A	rduino ใช้เวลา 20 นาที
วิชา	ไมโครคอนโทรลเลอร์เบื้องต้น	รหัสวิชา (2127-2007)
ระดับชั้เ	J ประกาศนียบัตรวิชาชีพ (ปวช.)	สาขาวิชา เมคคาทรอนิกส์
*****	***************************************	******

<u>คำชี้แจง</u> 1. แบบทดสอบมีทั้งหมด 10 ข้อ (10 คะแนน)

- 2. ให้ผู้เรียนเลือกคำตอบที่ถูกที่สุดแล้วกาเครื่องหมายกากบาท (×) ลงในกระดาษคำตอบ
- 1. ไมโครคอนโทรลเลอร์สามารถจ่ายแรงดันและกระแสไฟฟ้าไป<u>ขับรีเลย์</u>ได้ประมาณเท่าใด
 - ก. +4 หรือ +5V 20mA
 - ข. +3 หรือ +5V 20mA
 - ค. +2 หรือ +5V 20mA
 - ง. +1 หรือ +5V 20mA
- 2. รีเลย์ทำหน้าที่
 - ก. ใช้กำหนดขาเป็น INPUT
 - ข. โหมดการทำงานเป็น INPUT หรือ OUTPUT
 - ค. เป็นสวิตช์แรงดันและกระแสไฟฟ้าสูง
 - กำหนดขาพอร์มีสถานะเป็นลอจิกสูงหรือลอจิกต่ำ
- 3. รีเลย์เป็นอุปกรณ์ที่ทำงานแบบใด
 - ก. กลไกทางกล
 - ข. แม่เหล็กไฟฟ้า
 - ค. สวิตซ์แรงเหวี่ยงหนีศูนย์กลาง
 - สวิตซ์แรงเหวี่ยง
- 4. หน้าสัมผัส (contact) ที่มีใช้ในรีเลย์เป็นแบบใด
 - ก. หน้าสัมผัสปกติปิด (Normally Closed:NC)
 - ข. หน้าสัมผัสปกติปิด (Normally Closed:NC) และ ปกติเปิด (Normally Opened :NO)
 - ค. หน้าสัมผัสปกติ และผิดปกติ
 - ง. หน้าสัมผัสปกติเปิด (Normally Opened :NO)

- 5. คุณสมบัติรีเลย์ที่พิมพ์ลงบนตัวถังรีเลย์ว่า 10A 250VAC , 10A 125VAC หมายความว่าอย่างไร
 - ก. ใช้กับไฟฟ้ากระแส<u>ตรง</u>ที่แรงดัน 125 ถึง 250 V. ทนกระแสไฟฟ้าได้เกิน 10 A.
 - ข. ใช้กับไฟฟ้ากระแส<u>ตรง</u>ที่แรงดัน 125 ถึง 250 V. ทนกระแสไฟฟ้าได้ไม่เกิน 10 A.
 - ค. ใช้กับไฟฟ้ากระแส<u>สลับ</u>ที่แรงดัน 125 ถึง 250 V. ทนกระแสไฟฟ้าได้เกิน 10 A.
 - ง. ใช้กับไฟฟ้ากระแส<u>สลับ</u>ที่แรงดัน 125 ถึง 250 V. ทนกระแสไฟฟ้าได้ไม่เกิน 10 A.

6. อุปกรณ์ที่ทำหน้าที่จ่ายแรงดันและกระแสสูงโดยเฉพาะเรียกว่า

- ก. ออปแอมป์
- ข. ไมโครคอนโทรลเลอร์
- ค. ไดรเวอร์
- ۹. OTA
- 7. การใช้ทรานซิสเตอร์ขับแบบเดี่ยว เบอร์ 2N3904 มีค่ากระแสคอลเล็กเตอร์สูงสุดถึง
 - ก. 400 mA
 - ข. 300 mA
 - ค. 200 mA
- 8. Relay Module 4 Channels มีเอาต์พุตคอนเน็คเตอร์อะไรบ้าง
 - ก. อ่านค่าข้อมูลที่ได้รับจากพอร์ต<u>อนุกรม</u>
 - ข. อ่านค่าข้อมูลที่ได้รับจากพอร์ต<u>ขนาน</u>
 - ค. สั่งงานด้วยระดับแรงดัน TTL
 - 1. NO/COM/NC
- 9. การใช้ไอซีขับเบอร์ ULN2003 ขับกระแสโหลดได้มากที่สุดเท่าใด
 - ก. 600 mA
 - ข. 500 mA
 - ค. 400 mA
 - ۹. 300 mA
- 10. ULN2003 ป้องกันแรงดันย้อนกลับจากอุปกรณ์เอาต์พุตอย่างไร
 - ก. ต่อตัวเก็บประจุ
 - ข. ต่อความต้านทาน
 - ค. ต่อทรานซิสเตอร์
 - ง. ต่อไดโอด

หน่วยที่ 7 การขับโหลดไฟฟ้ากระแสสูงและการเชื่อมต่ออุปกรณ์ภายนอกด้วย Arduino

หนึ่งในการประยุกต์ใช้งานระบบควบคุมอัตโนมัติ คือการควบคุมอุปกรณ์ที่มีความต้องการกระแสไฟฟ้าและ แรงดันไฟฟ้าสูง เช่นหลอดไฟ มอเตอร์ ขดลวดเคลื่อนที่ หรือโซลินอยด์ ในขณะที่ไมโครคอนโทรลเลอร์สามารถขับ แรงดันไฟฟ้าและกระแสไฟฟ้าทางเอาต์พุตไม่สูง คือประมาณ +3 หรือ +5V 20mA

ดังนั้นจึงต้องมีการเรียนรู้ถึงแนวทางในการนำไมโครคอนโทรลเลอร์ไปขับอุปกรณ์ที่ต้องการพลังงานไฟฟ้า สูง อุปกรณ์ที่นิยมนำมาใช้ในการขับโหลดกระแสไฟฟ้าสูงร่วมกับไมโครคอนโทรลเลอร์คือรีเลย์ (Relay)

รูปที่ 7.1 บอร์ดรีเลย์ใช้ในการเชื่อมต่ออุปกรณ์ภายนอกของ Arduino (ที่มา www.Thaieasyelec.com)

7.1 ความรู้เบื้องต้นเกี่ยวกับรีเลย์

รีเลย์ทำหน้าที่เป็นสวิตช์แรงดันและกระแสไฟฟ้าสูง ใช้งานได้ทั้งกับโหลดไฟฟ้ากระแสตรงและกระแสสลับ เป็นอุปกรณ์แม่เหล็กไฟฟ้าแบบหนึ่ง ที่ทำหน้าที่เป็นสวิตช์ตัดต่อหนึ่งชุดหรือมากกว่า ขึ้นอยู่กับจำนวนหน้าสัมผัสที่ รีเลย์ตัวหนึ่งๆ บรรจุอยู่ รีเลย์มีสัญลักษณ์ตามรูปที่ 7.2 (ก) รีเลย์ประกอบด้วยส่วนสำคัญ 2 ส่วนคือ ขดลวด (Coil) และหน้าสัมผัส (Contact) แบ่งเป็นหน้าสัมผัสปกติปิดวงจรหรือแบบต่อ (Normally Closed:NC) และปกติเปิดวงจรหรือไม่ต่อ (Normally Opened :NO)

รูปที่ 7.2 แสดงสัญลักษณ์และการทำงานเบื้องต้นของรีเลย์ (ที่มา www.Inex.co.th)

รูปที่ 7.3 การทำงานเบื้องต้นของรีเลย์ (ที่มา www.Thaieasyelec.com)

การกระตุ้นให้รีเลย์ทำงาน ทำได้ง่ายมากเพียงจ่ายแรงดันให้แก่ขดลวดในปริมาณที่ขดลวดนั้นต้องการ ก็ทำ ให้แม่เหล็กไฟฟ้าเกิดขึ้นที่ หน้าสัมผัสเกิดการดูดหน้าสัมผัสจากจุด NC มายังจุด NO ดังนั้นเมื่อรีเลย์ทำงาน หน้า สัมผัส NO จะต่อวงจร ในขณะที่ NC จะเปิดวงจรแทน ในลักษณะนี้ทำงานเหมือนเป็นสวิตช์ 2 ทางที่ควบคุมด้วย แม่เหล็กไฟฟ้า ดังแสดงการทำงานในรูปที่ 7.2 (ข)

คุณสมบัติที่สำคัญของรีเลย์ได้แก่

- 1. แรงดันตกคร่อมขดลวด ที่ทำให้รีเลย์ทำงาน (Vcoil หรือ Coil Voltage)
- 2. ค่าความต้านทานของขดลวด (Coil Resistance)
- 3. อัตราทนได้สูงสุด ทั้งแรงดันและกระแสไฟฟ้าของหน้าสัมผัส (Contact Rating)
- 4. อายุการใช้งาน (Operating Time)
- 5. ตำแหน่งขาของหน้าสัมผัส NO, NC และ C รวมทั้งขาต่อใช้ งานของขดลวด

รูปที่ 7.3 ลักษณะภายนอกของรีเลย์ (ที่มา www.Thaieasyelec.com)

หมายเลขในรูปที่ 7.3 มีความหมายดังนี้

- 1. ยี่ห้อรุ่นของผู้ผลิต (แบรนด์) รวมถึงสัญลักษณ์มาตรฐานต่างๆ
- 2. รายละเอียดของไฟฟ้ากระแสสลับที่รองรับการทำงานได้ (VAC)
- 3. รายละเอียดของไฟฟ้ากระแสตรงที่รองรับการทำงานได้ (VDC)
- 4. โมเดล ระดับแรงดันฝั่งขดลวด ชนิดและโครงสร้าง และข้อมูลด้าน Coil Sensitivity คุณสมบัติแบบละเอียด ดูได้จากตารางที่ 7.1

1	松乐继电器 ® SONGLE RELAY		R	ELAY ISO9002	S	RD
	RATING					
	CCC FILE NUMBER:CH0052885-2000 7A/240VDC					
2-3	CCC FILE NUMBER:CH0036746-99 10A/250VDC					
	UL/CUL FILE NUMBER: E167996 10A/125VAC 28VDC					
	TUV FILE NUMBER: R9933789 10A/240VAC 28VDC					
	SRD	XX VDC		S	L	С
4	Model of relay	Nominal coil volta	ge	Structure	Coil sensitivity	Contact form
				8VDC S:Sealed type	L:0.36W	A:1 form A
	SRD 03, 05, 06, 09, 12, 24, 48V	48VDC	L.0.50 W		B:1 form B	
			E:Flux free type	D:0.45W	C:1 form C	

ตารางที่ 7.1 ลักษณะภายนอกของรีเลย์

(ที่มา www.Thaieasyelec.com)

จากตารางที่ 7.1 เป็น Relay ยี่ห้อ Songle โมเดล SRD รองรับการทำงานแรงดันกระแสสลับที่ 250V@10A หรือ 125V@10A รองรับแรงดันกระแสตรงที่ 28VDC@10A ฝั่งขดลวดทำงานด้วยแรงดัน 5 V โครงสร้างตัว Relay เป็นแบบซีลด์ มีค่าความไวขดลวดที่ 0.36 W หน้าสัมผัสเป็นรูปแบบ 1 From C หน้าสัมผัสแบบ A (Form A) หมายถึง หน้าสัมผัสของ Relay ในสภาพปกติจะเปิดอยู่ (Normally

Open) เขียนเป็นสัญลักษณ์ได้คือ

หน้าสัมผัสแบบ B (Form B) หมายถึง หน้าสัมผัสของ Relay ในสภาพปกติจะปิด (Normally Close) และ เขียนเป็นสัญลักษณ์ได้คือ

หน้าสัมผัสแบบ B (Form B) ______

หน้าสัมผัสแบบ C (Form C) แบบนี้เรียกว่า "Break, Make หรือ Transfer" เขียนสัญลักษณ์ได้ดังนี้

หน้าสัมผัสแบบ C จะมีอยู่ด้วยกัน 3 ขา ในขณะที่ Relay ยังไม่ทำงาน หน้าสัมผัส 1 และ 2 จะต่อกันอยู่ เมื่อ Relay ทำงานหน้าสัมผัส 1 และ 2 จะแยกกัน จากนั้นหน้าสัมผัส 1 จะมาต่อกับหน้าสัมผัส 3 แทน พอ Relay หยุดทำงานหน้าสัมผัส 1 กับ 2 ก็จะกลับมาต่อกันตามเดิม

7.2 วงจรขับรีเลย์

ในการทำงานปกติ พอร์ตเอาต์พุตของไมโครคอนโทรลเลอร์ ไม่สามารถนำไปขับอุปกรณ์เอาต์พุต กระแสไฟฟ้าสูงได้โดยตรง เนื่องจากข้อจำกัดด้านความสามารถในการจ่ายกระแสไฟฟ้า ดังนั้นถ้าต้องการนำ ไมโครคอนโทรลเลอร์ ไปขับโหลดกระแสไฟฟ้าสูง ต้องมีอุปกรณ์ที่ทำหน้าที่จ่ายแรงดันและกระแสสูงโดยเฉพาะ เรียกอุปกรณ์เหล่านี้ว่าอุปกรณ์ขับ หรือไดรเวอร์ (Driver)

7.2.1 การใช้ทรานซิสเตอร์ขับแบบเดี่ยว

การขับโดยวิธีนี้ เหมาะสมสำหรับโหลดที่มีความต้องการกระแสไฟฟ้าปานกลาง ตั้งแต่ 30 ถึง 200 mA เช่นรีเลย์กำลังต่ำไปจนถึงปานกลาง ที่มีค่าความต้านทานของขดลวดภายในรีเลย์ไม่ต่ำกว่า 100 ohm, หลอดไฟ กำลังต่ำ และมอเตอร์ไฟตรงขนาดเล็ก

รูปที่ 7.4 วงจรขับโหลดกระแสไฟฟ้าปานกลาง รูปที่ 7.5 การขับโหลดโดยใช้ทรานซิสเตอร์ต่อแบบดาร์ลิงตัน (ที่มา www.Inex.co.th)

ในรูปที่ 7.4 เป็นการต่อทรานซิสเตอร์ เข้ากับขาพอร์ตของไมโครคอนโทรลเลอร์ โดยมีตัวต้านทาน R1 ทำ หน้าที่จำกัดกระแสไฟฟ้าที่ไหลเข้าขาเบสของทรานซิสเตอร์ Q1 ซึ่งจะทำงานก็ต่อเมื่อขาพอร์ตของ ไมโครคอนโทรลเลอร์ มีสถานะลอจิกเป็น "1" เมื่อ Q1 ทำงาน เกิดกระแสไฟฟ้าไหลผ่าน RL ซึ่งเป็นโหลดต่ออยู่ ทางเอาต์พุต ที่ขาคอลเล็กเตอร์ของ Q1 กระแสโหลดสูงสุด (ILmax) มีค่าเท่ากับ 12V / 300 ohm = 40 mA ถึงแม้ว่า Q1 เบอร์ 2N3904 มีค่ากระแสคอลเล็กเตอร์สูงสุดถึง 100mA แต่ในทางปฏิบัติจริง ไม่ควรออกแบบให้ ทรานซิสเตอร์ทำงานถึงพิกัดสูงสุด ย่านปลอดภัยของทรานซิสเตอร์ ควรอยู่ไม่เกินครึ่งหนึ่งของอัตราการทนได้สูงสุด ด้วยการจัดวงจรตามรูปที่ 7.4 สามารถใช้สัญญาณจากพอร์ตเอาต์พุต กระตุ้นให้ทรานซิสเตอร์ทำงานเพื่อขับรีเลย์ ขนาดเล็กได้อย่างปลอดภัย

7.2.2 การใช้ทรานซิสเตอร์แบบดาร์ลิงตันขับโหลดกระแสสูง

จากการใช้ทรานซิสเตอร์ต่อกันแบบคาสเคด เพื่อเพิ่มความสามารถในการขับกระแสไฟฟ้าให้สูงขึ้น นำมาสู่ การใช้ทรานซิสเตอร์อีกแบบหนึ่งที่บรรจุทรานซิสเตอร์ 2 ตัวต่อกันแบบดาร์ลิงตันภายใต้ตัวถังเดียวกัน ทำให้ขับ กระแสไฟฟ้าทางเอาต์พุตได้สูง และมีความเร็วในการทำงานสูงด้วย โดยใช้อุปกรณ์เพียงตัวเดียว ส่งผลให้ขนาดของ วงจรเล็กลง ดังแสดงวงจรตามรูปที่ 7.5 จากวงจร Q1 ซึ่งเป็นทรานซิสเตอร์แบบดาร์ลิงตัน สามารถขับกระแสไฟฟ้า ทางเอาต์พุตได้สูงถึง 750 mA ด้วยการต่อเข้ากับพอร์ตเอาต์พุต โดยผ่านตัวต้านทานจำกัดกระแสเพียงตัวเดียวและ ไม่ต้องต่อทรานซิสเตอร์แบบคาสเคด ทำให้มีความเร็วในการทำงานสูง ตลอดจนสามารถขับกระแสไฟฟ้าทางเอาต์ พุตได้สูงพอสมควร

7.2.3 การใช้ไอซีขับ

ไอซีที่ใช้ในการขับโหลดกระแสสูง มักจะมีวงจรทางเอาต์พุตเป็นแบบคอลเล็กเตอร์เปิด ทำให้ใช้กับแรง ดันไฟฟ้าที่สูงได้ สำหรับไอซีขับหรือไอซีไดรเวอร์ที่ยกมาอธิบายคือเบอร์ ULN2003 เป็นไอซีที่ภายในบรรจุอินเวอร์ เตอร์เกต 7 ตัว มีรูปแบบการจัดขาและวงจรภายในแสดงในรูปที่ 7.6

ใช้กับแรงดันได้สูงสุด +30V กระแสเอาต์พุตสูงสุดในแต่ละขาเท่ากับ 500 mA ทั้งนี้ขึ้นอยู่กับความสามารถ ในการจ่ายกระแสไฟฟ้าของแหล่งจ่ายไฟด้วย นอกจากนั้นยังมีการต่อไดโอดป้องกันแรงดันย้อนกลับจากอุปกรณ์ เอาต์พุต ที่มีโครงสร้างเป็นขดลวดไว้ที่ทุกขาเอาต์พุต ทำให้ใช้ขับโหลดที่เป็นขดลวด เช่นรีเลย์ หรือมอเตอร์ไฟตรง ขนาดเล็กถึงขนาดกลางได้

รูปที่ 7.6 การใช้ไอซีไดรเวอร์เบอร์ ULN2003 ขับโหลดกระแสสูง (ที่มา www.Inex.co.th)

7.3 การเชื่อมต่ออุปกรณ์ภายนอกด้วยบอร์ดขับรีเลย์

Relay4 ช่อง เป็นแผงวงจรขับรีเลย์ 4 ช่อง ราคาประหยัดมีคุณสมบัติทางเทคนิคโดยสรุปแสดงด้านล่าง ส่วนในรูปที่ 7.7 แสดงวงจรสมบูรณ์และลักษณะรูปร่างของบอร์ด Relay4 ช่อง

รูปที่ 7.7 ลักษณะภายนอกของ Relay Module 4 Channels (ที่มา www.Thaieasyelec.com)

Relay Module 4 Channels มีเอาต์พุตคอนเน็คเตอร์ที่ Relay เป็น NO/COM/NC สามารถใช้กับโหลด ได้ทั้งแรงดันไฟฟ้า DC และ AC โดยใช้สัญญาณในการควบคุมการทำงานด้วยสัญญาณโลจิก TTL

คุณสมบัติ (Features)

- รีเลย์เอาต์พุตจำนวน 4 ช่อง
- สั่งงานด้วยระดับแรงดัน TTL
- CONTACT OUTPUT ของรีเลย์รับแรงดันได้สูงสุด 250 VAC 10 A, 30 VDC 10 A
- มี LED แสดงสถานะ การทำงานของรีเลย์และแสดงสถานะของบอร์ด
- มีจัมพ์เปอร์สำหรับเลือกว่าจะใช้กราวด์ร่วมหรือแยก
- มี OPTO-ISOLATED เพื่อแยกกราวด์ส่วนของสัญญาณควบคุมกับไฟฟ้าที่ขับรีเลย์ออกจากกัน ขาสัญญาณ (Pin Definition)

รูปที่ 7.8 แสดงขาที่ใช้ในการเชื่อมต่อของ Relay Module 4 Channels

ขาที่	คำอธิบาย
1	+VCC ขาไฟ 5VDC
2	GND
3	ขาสัญญาณอินพุต Relay 1 (IN1)
4	ขาสัญญาณอินพุต Relay 2 (IN2)
5	ขาสัญญาณอินพุต Relay 3 (IN3)
6	ขาสัญญาณอินพุต Relay 4 (IN4)
7	COM (คอมมอนของ OPTO)
8	GND (กราวด์ของบอร์ดเป็นกราวด์เดียวกันกับขาที่ 2)
9	NC (Normal Close) ซึ่งหมายถึงหน้าสัมผัสแบบปกติปิด
10	COM (Common) ที่จะตัดหรือต่อวงจรจากขา NC, NO
11	NO (Normal Open) ซึ่งหมายถึงหน้าสัมผัสแบบปกติเปิด

(ที่มา www.Thaieasyelec.com)

ตารางที่ 7.2 แสดงขาที่ใช้ในการเชื่อมต่อของ Relay Module 4 Channels (ที่มา www.Thaieasyelec.com)

รูปที่ 7.9 วงจรสมบูรณ์ของ Relay4i บอร์ดขับรีเลย์ 4 ช่อง (ที่มา www.Inex.co.th)

การใช้งานบอร์ดขับรีเลย์ Relay4i ต่อโหลดที่ต้องการควบคุมเข้าที่จุดต่อหน้าสัมผัสของรีเลย์ ซึ่งมี 4 ช่อง แต่ละช่องเลือกให้ทำงานแบบต่อหรือตัดวงจรก็ได้ ปกติแล้วจะเลือกใช้งานแบบ ต่อวงจรมากกว่า นั่นคือเมื่อรีเลย์ ทำงานจะเป็นการต่อวงจรเพื่อจ่ายไฟเลี้ยงไปยังโหลดหรืออุปกรณ์ไฟฟ้า เพื่อให้ทำงานต่อไป

รูปที่ 7.10 แสดงส่วนประกอบของ Relay4i บอร์ดขับรีเลย์ 4 ช่องและการต่อใช้งาน (ที่มา www.Inex.co.th)

จากรูปที่ 7.10 จะเห็นว่าผู้ใช้งานสามารถต่อหน้าสัมผัสรีเลย์เข้ากับเครื่องใช้ไฟฟ้าได้สูงสุด 220Vac 600W (วัตต์) โดยต่อผ่านเต้าเสียบ ในขณะที่อีกช่องหนึ่งนั้นจะต่อกับหลอดไฟ 12V ในแต่ละช่องของหน้าสัมผัสรีเลย์ต่อ กับโหลดได้ทั้งแบบไฟฟ้ากระแสตรงหรือกระแสสลับ รวมถึงการต่อวงจรเพื่อทำหน้าที่เป็นเหมือนสวิตช์ธรรมดาก็ สามารถทำได้

- ใช้ไอซีขับโหลดกระแสสูงเบอร์ ULN2003 บนบอร์ดจัดวงจรเพื่อขับรีเลย์ 12V 4 ช่อง
- ใช้ไฟเลี้ยง +12V แยกต่างหาก
- รับสัญญาณลอจิก "1" จากไมโครคอนโทรลเลอร์หรือวงจรภายนอกในการกระตุ้นให้รีเลย์ทำ งาน
- มีไฟแสดงการทำงานของรีเลย์
- จุดต่อหน้าสัมผัสรีเลย์เป็นแบบขันสกรูทำให้สามารถต่อใช้งานได้อย่างสะดวก
- อัตราทนได้ของหน้าสัมผัสรีเลย์ 220Vac 5A รองรับโหลดได้ไม่เกิน 600 วัตต์

1. หน้าสัมผัส NO หมายถึงปกติเปิดวงจร (Normally Open) เมื่อรีเลย์ทำงานจะต่อวงจรเข้ากับขา C ดังนั้นหากต้องการใช้งานในแบบต่อวงจรต้องเลือกต่อใช้งานหน้าสัมผัส NO และ C

2. หน้าสัมผัส NC หมายถึงปกติปิดวงจร (Normally Close) เมื่อรีเลย์ทำงานจะเปิดวงจรออกจากกับขา C หากต้องการใช้งานแบบตัดวงจรต้องเลือกต่อใช้งานหน้าสัมผัส NC และ C

- 3. จุดต่อหน้าสัมผัสรีเลย์เป็นแบบขันสกรู ทำให้สามารถต่อใช้งานได้อย่างสะดวก
- 4. อัตราทนได้ของหน้าสัมผัสรีเลย์ 220Vac 5A สามารถรองรับโหลดได้ 600 วัตต์

5. ต่อไฟเลี้ยง +12V สำหรับเลี้ยงวงจรแยกต่างหากจากไฟเลี้ยงของแผงวงจรควบคุม

6. เมื่อต้องการให้วงจรขับรีเลย์ชุดใดทำงาน ให้ป้อนสัญญาณลอจิก "1" จากไมโครคอนโทรลเลอร์เข้าที่จุด ต่ออินพุต Relay-1 ถึง Relay-4 โดยต่อใช้งานพร้อมกันทั้ง 4 ช่อง หรือควบคุมแยกช่องก็ได้

7. เมื่อวงจรขับได้รับสัญญาณลอจิก "1" ไอซีขับบนบอร์ด Relay4i ทำงานจะได้ยินเสียงหน้าสัมผัสรีเลย์ ตัดต่อพร้อมกับไฟแสดงการทำงานของรีเลย์ติดสว่าง หากต้องการหยุดการทำงานให้ส่งสัญญาณลอจิก "0"เข้ามาที่ อินพุตของวงจร

7.4 การใช้งาน Arduino กับบอร์ดขับรีเลย์ 4 ช่อง

ลำดับต่อไปเป็นการนำเสนอตัวอย่างการทดลองเพื่อนำบอร์ดมาใช้งานกับบอร์ด Relay4i เพื่อขับโหลด กระแสสูง โดยแบ่งออกเป็น 2 แบบคือ

- สวิตซ์ไฟฟ้าแบบโปรแกรมได้อย่างง่าย เป็นการทดลองขับรีเลย์อย่างง่ายโดยผู้ใช้งานสามารถ ปรับเปลี่ยนค่าเวลาในการทำ งานและหยุดทำงานได้
- ควบคุมการขับรีเลย์ผ่านคอมพิวเตอร์

7.4.1 สวิตช์ไฟฟ้าแบบโปรแกรมได้อย่างง่าย

ในการทดลองนี้ เป็นการสร้างระบบควบคุมเปิด/ปิด อุปกรณ์ไฟฟ้าตามเวลาอย่างง่าย เป็นการแสดงให้ เห็นถึงการนำระบบไมโครคอนโทรลเลอร์ ซึ่งใช้ ไฟเลี้ยง +5V ในการทำงานไปควบคุมการเปิดปิดของอุปกรณ์ไฟฟ้า ระบบ +12V ซึ่งสามารถนำแนวทางของการทดลองนี้ ไปประยุกต์ใช้ ควบคุมอุปกรณ์ไฟฟ้า 220Vac ได้โดยสังเกต ผลการทำงานจาก LED แสดงสถานะการทำงานของบอร์ด Relay4i รวมถึงเสียงการตัดต่อหน้าสัมผัสของรีเลย์ ในขณะทำงาน

 ต่อวงจรตามรูปที่ 7.11 ไฟเลี้ยงบอร์ด Relay4i คือ +12 V (ควรวัดแรงดันจากแหล่งจ่ายไฟก่อนต่อเข้า กับบอร์ดเพื่อใช้งานจริง)

- เปิดโปรแกรม Arduino IDE เขียนโปรแกรมที่ 7.1 จากนั้นคอมไพล์ และอัปโหลดสู่บอร์ด Arduino
- รันโปรแกรมเมื่อเริ่มทำงานรีเลย์ทุกตัวถูกควบคุมให้หยุดทำงาน จากนั้นรีเลย์ช่อง 1 จะเป็นตัวแรกที่

ทำ งานนาน 0.5 วินาทีแล้วหยุดทำงาน รีเลย์ช่อง[®] 2 จะทำงานต่อในลำดับถัดไป เรียงไปตามลำดับจนครบทั้ง 4 ช่อง จากนั้นรีเลย์ทุกช่องถูกขับให้ทำงานนาน 0.5 วิ นาที แล้วหยุดลงนาน 0.5 วินาที ก่อนจะเริ่มทำงานในรอบใหม่

แจ็กอะแดปเตอร์บัดกรีกับเศษขาอุปกรณ์หรือสายไฟเดี่ยว #22AWG แล้วขันยึดเข้ากับเทอร์มินอล

โปรแกรมที่ 7.1

int RELAY1_PIN = 18; // Output for driving relay pin 1

int RELAY2_PIN = 19; // Output for driving relay pin 2

int RELAY3_PIN = 20; // Output for driving relay pin 3

int RELAY4_PIN = 21; // Output for driving relay pin 4

// Set off state for all relays

boolean RELAY_STATE = false;

char RelayOut[4] = {RELAY1_PIN,RELAY2_PIN,RELAY3_PIN,RELAY4_PIN};

char i;

```
void setup()
       {
       pinMode(RELAY1 PIN, OUTPUT); // Set output pin
       pinMode(RELAY2 PIN, OUTPUT);
       pinMode(RELAY3 PIN, OUTPUT);
       pinMode(RELAY4 PIN, OUTPUT);
       digitalWrite(RELAY1 PIN, LOW); // Set default state of relay
       digitalWrite(RELAY2 PIN, LOW);
       digitalWrite(RELAY3 PIN, LOW);
       digitalWrite(RELAY4 PIN, LOW);
       }
void loop()
       {
       for (i=0;i<4;i++) // Loop counter
       {
       digitalWrite(RelayOut[i],HIGH); // Turn-on relay
       delay(500); // Delay 0.5 second
       digitalWrite(RelayOut[i],LOW); // Turn-off relay
       delay(500); // Delay 0.5 second
       } // Turn-on all relays
       digitalWrite(RELAY1 PIN,HIGH);
       digitalWrite(RELAY2 PIN,HIGH);
       digitalWrite(RELAY3 PIN,HIGH);
       digitalWrite(RELAY4 PIN,HIGH);
       delay(500); // Delay 0.5 second
       // Turn-off all relays
       digitalWrite(RELAY1 PIN,LOW);
       digitalWrite(RELAY2_PIN,LOW);
       digitalWrite(RELAY3 PIN,LOW);
       digitalWrite(RELAY4 PIN,LOW);
       delay(500);
       }
```

คำอธิบายโปรแกรม

ในโปรแกรมใช้ตัวแปร Relay Out ซึ่งกำหนดเป็นตัวแปรแบบอะเรย์ที่มีสมาชิก 4 ตัว แต่ละตัวคือขา พอร์ตที่ใช้ส่งสัญญาณไปยังวงจรขับรีเลย์ แล้วใช้การวนลูปเพื่อทำการเขียนค่าไปยังขาพอร์ตเพื่อเปิดปิด วงจรขับรี เลย์ ด้วยวิธีนี้ทำให้โปรแกรมควบคุมกระชับขึ้น รีเลย์แต่ละตัวจะทำงานและหยุดทำงาน 0.5 วินาที เรียงลำดับจาก การชี้ด้วยตัวแปร i จากนั้นจะทำการขับรีเลย์ทั้งหมดให้ทำงาน 0.5 วินาที และหยุดทำงานทั้งหมดเป็นเวลา 0.5 วินาที จากนั้นวนกลับไปเริ่มต้นทำงานใหม่

7.4.2 ควบคุมการขับรีเลย์ผ่านคอมพิวเตอร์

ในการทดลองนี้เป็นการสร้างระบบควบคุม เปิด/ปิด อุปกรณ์ไฟฟ้าด้วยการควบคุมจากคอมพิวเตอร์ เป็นการแสดงให้เห็นถึงการสื่อสารข้อมูลอนุกรมระหว่างคอมพิวเตอร์กับระบบไมโครคอนโทรลเลอร์ เพื่อทำการ ควบคุมการเปิดปิดของอุปกรณ์ไฟฟ้าผ่านรีเลย์

- ใช้วงจรในรูปที่ 7.11 ทำการทดลอง
- เปิดโปรแกรม Arduino IDE เขียนโปรแกรมที่ 7.2 จากนั้นคอมไพล์และอัปโหลดสู่บอร์ด Arduino
- เมื่ออัปโหลดโปรแกรมเสร็จ ทำการเปิดหน้าต่าง Serial monitor เลือกอัตราบอดเป็น 9600

โปรแกรมที่ 7.2

/* Example sketch to control the RELAY4 4-Channel Relay Driver.

- * Connect Relay4i inputs to Arduino pins 18, 19, 20 and 21
- * Open the Serial monitor at 9600 baud
- * and value to ON/OFF each relay
- * Credit : http://www.freetronics.com */

int RELAY1_PIN = 18; // Output for driving relay pin 1

int RELAY2_PIN = 19; // Output for driving relay pin 2

```
int RELAY3_PIN = 20; // Output for driving relay pin 3
```

int RELAY4_PIN = 21; // Output for driving relay pin 4

byte command = 0;

void setup(){

Serial.begin(9600); // Set baudrate 9600 bps

delay(5000); // Initial delay

Serial.println("Arduino with RELAY4i"); // Shows title message

Serial.println("Ready. Type 0 to OFF all relays, 1 – 4 to ON each relay.");

pinMode(RELAY1_PIN,OUTPUT); // Set output pin

pinMode(RELAY2_PIN,OUTPUT);

pinMode(RELAY3_PIN,OUTPUT);

pinMode(RELAY4_PIN,OUTPUT);
resetAllChannels(); // OFF all relay driver
delay(1000); // Delay 1 second
}

โปรแกรมที่ 7.2 ไฟล์ Relay_Simple.ino โปรแกรมภาษา C/C++ ของ Arduinio สำหรับบอร์ด Arduino ในการขับรีเลย์ 4 ตัวผ่านทางบอร์ด RELAY4i ตามเงื่อนไขที่กำหนดในโปรแกรม

คลิกที่นี่เพื่อเปิดหน้าต่าง Serial monitor

รูปที่ 7.12 การเปิดหน้าต่าง Serial Monitor (ที่มา www.Inex.co.th)

00 COM4	
0	Send
Arduino with RELAY4i	A
Ready. Type 0 to OFF all relays, 1 - 4 to ON each relay.	
Turn-on relay 1	
Turn-on relay 2	
Turn-on relay 3	
Turn-on relay 4	
Turn-off all relays	
	_
ļ	~
✓ Autoscroll No line ending 9600	baud 💌

รูปที่ 7.13 การแสดงผลของ Serial Monitor (ที่มา www.Inex.co.th)

การจะควบคุมให้มอเตอร์หมุนไปกลับ หรือ ซ้าย-ขวา นั้นจะต้องใช้ Relay 2 ตัวในการควบคุม การสร้าง ระบบควบคุม เปิด/ปิด อุปกรณ์ไฟฟ้าด้วยการควบคุมจากคอมพิวเตอร์ เป็นการแสดงให้เห็นถึงการสื่อสารข้อมูล อนุกรมระหว่างคอมพิวเตอร์กับระบบไมโครคอนโทรลเลอร์ เพื่อทำการควบคุมการเปิดปิดของอุปกรณ์ไฟฟ้าผ่าน รีเลย์ สามารถต่อหน้าสัมผัสรีเลย์เข้ากับเครื่องใช้ไฟฟ้าได้สูงสุด 220Vac 600W (วัตต์) โดยต่อผ่านเต้าเสียบ ในขณะ ที่อีกช่องหนึ่งนั้นจะต่อกับหลอดไฟ 12V ในแต่ละช่องของหน้าสัมผัสรีเลย์ ต่อกับโหลดได้ทั้งแบบไฟฟ้ากระแสตรง หรือกระแสสลับ รวมถึงการต่อวงจรเพื่อทำหน้าที่เป็นเหมือนสวิตช์ธรรมดาก็สามารถทำได้โดยใช้ไอซีขับโหลด กระแสสูงเบอร์ ULN2003

<u>คำชี้แจง</u> 1. แบบฝึกหัดมีทั้งหมด 2 ตอน ประกอบด้วยตอนที่ 1 และตอนที่ 2 (20 คะแนน)

- 2. แบบฝึกหัดตอนที่ 1 เป็นคำถามแบบถูก-ผิด มีทั้งหมด 20 ข้อ (10 คะแนน)
- 3. แบบฝึกหัดตอนที่ 2 เป็นคำถามแบบปรนัย มีทั้งหมด 10 ข้อ (10 คะแนน)

<u>คำชี้แจง</u> ให้ผู้เรียนกาเครื่องหมายถูก ✔ ในข้อที่คิดว่าถูก และกาเครื่องหมายผิด ⊁ ในข้อที่คิดว่าผิด

คุณสมบัติที่สำคัญของรีเลย์ได้แก่

- _____ 1. แรงดันตกคร่อมขดลวด ที่ทำให้รีเลย์ทำงาน (Vcoil หรือ Coil Voltage)
- _____ 2. ค่าความต้านทานของขดลวด (Coil Resistance) ปกติ มีค่าประมาณ 100 ถึง 600W
- _____3. อัตราทนได้ต่ำสุด ทั้งแรงดันและกระแสไฟฟ้าของหน้าสัมผัส (Contact Rating)
- _____ 4. ไม่มีอายุการใช้งาน (Operating Time)
- _____ 5. ตำแหน่งขาของหน้าสัมผัส NO, NC และ C รวมทั้งขาต่อใช้ งานของขดลวด

คุณสมบัติ (Features) ของ Relay Module 4 Channels มีดังนี้

- _____ 6. รีเลย์เอาต์พุตจำนวน 2 ช่อง
- _____ 7. สั่งงานด้วยระดับแรงดัน CMOS
- _____ 8. มีจัมพ์เปอร์สำหรับเลือกว่าจะใช้กราวด์ร่วมหรือแยก ตัว
- _____ 9. ไม่มี OPTO-ISOLATED
- _____ 10. มี LED แสดงสถานะ

🖉 แบบฝึกหัดตอนที่ 2

<u>คำชี้แจง</u> ให้ผู้เรียนเลือกคำตอบที่ถูกที่สุดแล้วกาเครื่องหมายกากบาท (×) ให้ครบทุกข้อ

- 1. อุปกรณ์ที่นิยมนำมาใช้ในการขับโหลดกระแสไฟฟ้าสูงร่วมกับไมโครคอนโทรลเลอร์ คือ
 - ก. สวิตซ์
 - ข. รีเลย์
 - ค. แมกเนติก
 - ۹. PLC
- 2. รีเลย์ใช้งานกับโหลดกระแสไฟฟ้าแบบใด
 - ก. กระแสตรง
 - ข. กระแสตรงและกระแสสลับ
 - ค. กระแสสลับ 110 V
 - ง. กระแสสลับ 220 V
- 3. รีเลย์ประกอบด้วยส่วนสำคัญ 2 ส่วน คือ
 - ก. ตัวต้านทาน และ ตัวเก็ปประจุ
 - ข. ขดลวด และ ตัวเก็ปประจุ
 - ค. ขดลวด และ หน้าสัมผัส
 - ตัวต้านทาน และ ขดลวด
- 4. เมื่อรีเลย์ทำงานหน้าสัมผัส (contact) เป็นเช่นไร
 - ก. NC เป็น NO และ NO เป็น NC
 - ข. NC เป็น NO
 - ค. NO เป็น NC
 - ไม่มีอะไรเปลื่นแปลง
- 5. คุณสมบัติรีเลย์ที่พิมพ์ลงบนตัวถังรีเลย์ว่า 10A 30VDC , 10A 28VDC หมายความว่าอย่างไร
 - ก. ใช้กับไฟฟ้ากระแส<u>ตรง</u>ที่แรงดัน 28 ถึง 30 V. ทนกระแสไฟฟ้าได้ไม่เกิน 10 A.
 - ข. ใช้กับไฟฟ้ากระแส<u>ตรง</u>ที่แรงดัน 28 ถึง 30 V. ทนกระแสไฟฟ้าได้เกิน 10 A.
 - ค. ใช้กับไฟฟ้ากระแส<u>สลับ</u>ที่แรงดัน 28 ถึง 30 V. ทนกระแสไฟฟ้าได้ไม่เกิน 10 A.
 - ง. ใช้กับไฟฟ้ากระแส<u>สลับ</u>ที่แรงดัน 28 ถึง 30 V. ทนกระแสไฟฟ้าได้เกิน 10 A.

- 6. ข้อความที่พิมพ์ลงบนตัวถังรีเลย์ว่า SRD-05VDC-SL-C หมายความว่าอย่างไร
 - ก. ระดับแรงดันฝั่งขดลวด ชนิดและโครงสร้าง และข้อมูลด้าน Coil Sensitivity
 - ข. โมเดล ระดับแรงดันฝั่งขดลวด และข้อมูลด้าน Coil Sensitivity
 - ค. โมเดล ระดับแรงดันฝั่งขดลวด ชนิดและโครงสร้าง และข้อมูลด้าน Coil Sensitivity
 - โมเดล ระดับแรงดันฝั่งขดลวด ชนิดและโครงสร้าง

- ก. ปกติเปิด (Normally open)
- ข. ปกติปิด (Normally close)
- ค. หน้าสัมผัสแบบ C
- หน้าสัมผัสแบบ B

8. การขับโหลดแบบดาร์ลิงตันเบอร์ 2N6387 สามารถขับกระแสโหลดได้มากที่สุดเท่าใด

- ก. 650 mA
- ข. 700 mA
- ค. 750 mA
- <u>থ.</u> 800 mA
- 9. Relay Module 4 Channels มี OPTO-ISOLATED เพื่ออะไร
 - ก. การทำงานของรีเลย์และแสดงสถานะของบอร์ด
 - ข. การทำงานของรีเลย์
 - ค. การทำงานของบอร์ด
 - থ. on/off
- 10. ไอซีที่ใช้ในการขับโหลดกระแสสูง มักจะมีวงจรทางเอาต์พุตเป็นแบบใด
 - ก. อิมิเตอร์ร่วม
 - ข. เบสร่วม
 - ค. คอลเล็กเตอร์<u>ปิด</u>
 - ดอลเล็กเตอร์<u>เปิด</u>

ปฏิบัติการทดลองหน่วยที่ 7

เรื่อง การขับโหลดไฟฟ้ากระแสสูงและการเชื่อมต่ออุปกรณ์ภายนอกด้วย Arduino

<u>คำชี้แจง</u>

ให้ผู้เรียนทุกคนทำการทดลองตามปฏิบัติการทดลองหน่วยที่ 7 เรื่อง การขับโหลดไฟฟ้ากระแสสูงและการ เชื่อมต่ออุปกรณ์ภายนอกด้วย Arduino ใช้เวลา 180 นาที (20 คะแนน)

จุดประสงค์เชิงพฤติกรรม

- 1. สามารถขับโหลดไฟฟ้ากระแสสูงได้ถูกต้อง
- 2. สามารถแก้ปัญหาในการทำงานของบอร์ด Arduino Uno R3 ได้
- 3. สามารถต่อใช้งานและอัพโหลดโปรแกรมให้กับบอร์ด Arduino Uno R3 ได้

อุปกรณ์การทดลอง

1.	เครื่องคอมพิวเตอร์และโปรแกรม Arduino IDE 1.6.9	1	ଖ୍മ
2.	USB Cable Arduino Uno R3	1	เส้น
3.	Arduino Uno R3 Board	1	บอร์ด
6.	Hook-up Wires	10	เส้น
7.	Breadboard	1	แผง
8.	Relay Module4i	1	ตัว
9.	DC Motor 5 V	1	ตัว
10.	Incandescent Lamp	1	หลอด

ข้อควรระวัง

1. ควรระวังไม่วางบอร์ด Arduino Uno R3 หรือชีลต่างๆ บนโต๊ะโลหะหรือที่วางที่เป็นโลหะเพราะอาจเกิด การลัดวงจรของภาคจ่ายไฟได้

2. ไม่ควรต่อสายต่อวงจรในบอร์ด Arduino Uno R3 ทิ้งไว้ ควรถอดสายต่อวงจรออกให้หมด เพราะผล การทดลองอาจเกิดการผิดพลาดไม่เป็นไปตามทฤษฎีได้

3. ไม่ควรถอดสายสายโหลด USB เข้าออกตลอดเวลา เพราะอาจทำให้ภาคจ่ายไฟของบอร์ด Arduino Uno R3 เสียหายได้

การทดลองที่ 7.1 การควบคุมมอเตอร์ให้หมุนได้ทั้งซ้าย-ขวา โดยไม่การคุมความเร็วรอบ

มอเตอร์หมุนขวา

รูปที่ 7.14 การควบคุมทิศทางหมุนของมอเตอร์ DC

จากวงจรรูปที่ 7.14 เราจะเห็นได้ว่าในการจะควบคุมให้มอเตอร์หมุนไปกลับ หรือ ซ้าย-ขวา นั้นจะต้อง ใช้ Relay 2 ตัวในการควบคุม หลักการการทำงานคือ มีบอร์ด Arduino UNO R3 ในการรับข้อมูลจากคอมพิวเตอร์ สื่อสารผ่านพอร์ต Serial แล้วนำค่าที่ได้ไปตรวจสอบว่าตรงกับค่าที่กำหนดไว้หรือไม่ ถ้าตรงกันก็สั่ง ให้ Relay ทำงานตามที่เราต้องการ

- 1. นำขั้ว + ของมอเตอร์ต่อเข้ากับขา COM ของรีเลย์ตัวที่ 1
- 2. นำขั้ว ของมอเตอร์ต่อเข้ากับขา COM ของรีเลย์ตัวที่ 2
- 3. นำขา NC ของรีเลย์ทั้ง 2 ตัว ต่อเข้ากับไฟลบ (GND)
- 4. นำขา NO ของรีเลย์ทั้ง 2 ตัว ต่อเข้ากับไฟบวก (+5VDC)

Hardware Required/Circuit

รูปที่ 7.15 แสดงการต่อใช้งาน Arduino + Relay Module + Motor

Arduino	Relay Module 4 Ch	Motor
+5VDC	VCC	-
GND	GND	-
13	IN1	-
12	IN2	-
-	NC 1 GND (GND (-) Battery)	-
-	COM 1	Pin + Motor
-	NO 1 (VCC (+) Battery)	-
-	NC 2 (GND (-) Battery)	-
-	COM 2	Pin - Motor
-	NO 2 (VCC (+) Battery)	-

ตารางที่ 7.3 แสดงรายละเอียดขาของ Arduino + Relay Module + Motor

CODE

```
#define R 13 //กำหนดขาที่นำไปต่อกับรีเลย์
```

```
#define L 12
```

char test ; //สร้างตัวแปรไว้สำหรับรอรับข้อมูล

void setup()

{

// Open serial communications and wait for port to open:

Serial.begin(9600);

pinMode(R, OUTPUT); // กำหนดโหมดให้เป็น Output

pinMode(L, OUTPUT);

}

void loop() // run over and over

```
{
if (Serial.available()) // ตรวจสอบว่ามีข้อมูลเข้ามาหรือไม่
test = Serial.read();
else if (test == '1') // ถ้าข้อมูลที่เข้ามาคือ 1, 2, 3 ให้ทำงานตามที่กำหนด
{
```

```
digitalWrite(R, HIGH);
digitalWrite(L, LOW);
else if (test == '2')
{
digitalWrite(L, HIGH);
digitalWrite(R, LOW);
}
else if (test == '3')
{
digitalWrite(L, LOW);
digitalWrite(R, LOW);
}
}
```

การทดสอบ

- 1. ดาวน์โหลดโปรแกรมสำหรับส่งข้อมูลผ่าน Serial (ในบทความนี้ใช้โปรแกรม Terminal.exe)
- 2. เปิดโปรแกรม Arduino นำโค้ดตัวอย่างด้านบน ไปรันและอัพโหลดไปยัง Arduino UNO R3

เปิดโปรแกรม Terminal.exe เลือก Com Port และกำหนดความเร็วในการรับส่งข้อมูล จากนั้นกดปุ่ม
 Connect

2 Terminal v1.9 - 201006308 - by Br@y++	
Connect COM Port Baud rate BeScan COM4 C 600 C 14400 C 57600 Help COM4 C 1200 C 19200 C 115200 About. COMs C 4800 28800 C 256000 Quit G 9600 C 6000 C ustom	Data bits Parity Stop bits Handshaking C 5 C none C 1 C none C 6 C odd C 1.5 C XON/XOFF C 7 C mark C 2 C RTS/CTS+XON/XOFF C 8 C space C 2 C RTS on TX
Set Ing Auto Dis/Connect Time Stream log custo Set font AutoStart Script CR=LF Stay on Top 9600	m BR Rx Clear ASCII table Scripting 27 ↓ Graph Remote
CLEAR Reset Counter	Dec Bin StartLog StopLog Request/Response

รูปที่ 7.15 แสดงโปรแกรม Terminal.exe

- 4. ทำการส่งข้อมูลให้ Arduino โดยพิมพ์ข้อความลงในช่องด้านล่างของโปรแกรม
- a. ข้อมูลที่กำหนดไว้คือ 1 = หมุนขวา, 2 = หมุนซ้าย, 3 = หยุดหมุน

ผลการทดลอง

			•••••				
•••••	•••••	••••••	••••••	••••••	••••••	•••••	•••••
•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••		•••••
•••••	•••••	•••••••••••••••••••••••••	•••••••••••••••••••••••••		•••••••••••••••••••••••••	••••••	•••••
•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••••••	•••••

การทดลองที่ 7.2 การขับโหลดอุปกรณ์ไฟฟ้ากระแสสลับด้วยรีเลย์

- สำหรับอุปกรณ์ที่ใช้ไฟฟ้ากระแสสลับ (AC)
 - ต่อไฟเส้นที่ 1 จากแหล่งจ่ายไฟไปยังอุปกรณ์ที่ขั้วลบ (ถ้ามีแจ้งไว้ ถ้าไม่มีก็ใช้ขั้วใดก็ได้)
 - ต่อไฟเส้นที่ 2 จากแหล่งจ่ายไฟเข้าขา NO ของรีเลย์
 - ต่อสายจากขา COM ของรีเลย์ไปยังอุปกรณ์ไฟฟ้าขั้วที่เหลือ
- สำหรับอุปกรณ์ที่ใช้ไฟฟ้ากระแสตรง (DC)
 - ต่อไฟลบหรือ GND ไปยังอุปกณ์ไฟฟ้าเข้าที่ขั้วลบหรือ GND
 - ต่อไฟบวกหรือ VCC ไปยังขา NO ของรีเลย์
 - ต่อสายจากขา COM ของรีเลย์ไฟยังอุปกรณ์ไฟฟ้าที่ขั้วบวก

Hardware Required/Circuit

รูปที่ 7.16 แสดงการขับโหลดอุปกรณ์ไฟฟ้ากระแสสลับด้วยรีเลย์

Arduino	Relay Module 4 Ch	อุปกรณ์ไฟฟ้า
+5VDC	VCC	-
GND	GND	-
12	IN1	-
-	NO 1 (VCC (+) ไฟบวกจากแหล่งจ่ายไฟ)	-
-	Com	ขั้วไฟบวกของอุปกรณ์ (ถ้ามีการกำหนดขั้ว)
-	-	ขั้วไฟลบของอุปกรณ์ (ต่อตรงจากแหล่งจ่ายไฟ)

ตารางที่ 7.4 แสดงรายละเอียดขาของ Arduino + Relay Module + อุปกรณ์ไฟฟ้า

CODE

```
#define Lamp1 12 //กำหนดขาที่นำไปต่อกับรีเลย์
          char test ; //สร้างตัวแปรไว้สำหรับรอรับข้อมูล
void setup()
          {
// Open serial communications and wait for port to open:
          Serial.begin(9600);
          pinMode(Lamp1, OUTPUT); //กำหนดโหมดให้เป็น Output
          }
void loop() // run over and over
          {
          if (Serial.available()) // ตรวจสอบว่ามีข้อมูลเข้ามาหรือไม่
          test = Serial.read();
          else if (test == '1') //ถ้าข้อมูลที่เข้ามาคือ 1 , 3 ให้ทำงานตามที่กำหนด
          digitalWrite(Lamp1, HIGH);
          }
          else if (test == '3')
          ł
          digitalWrite(Lamp1, LOW);}}
```

การทดสอบ

- 1. ดาวน์โหลดโปรแกรมสำหรับส่งข้อมูลผ่าน Serial (ในบทความนี้ใช้โปรแกรม Terminal.exe)
- 2. เปิดโปรแกรม Arduino นำโค้ดตัวอย่างด้านบนไปรันและอัพโหลดไปยัง Arduino UNO R3
- 3. เปิดโปรแกรม Terminal.exe เลือก Com Port และกำหนดความเร็วในการรับส่งข้อมูล จากนั้นกดปุ่ม

Connect

- 4. ทำการส่งข้อมูลให้ Arduino โดยพิมพ์ข้อความลงในช่องด้านล่างของโปรแกรม
- a. ข้อมูลที่กำหนดไว้คือ 1 = เปิดไฟ, 3 = ปิดไฟ

ผลการทดลอง

สรุปผลการทดลอง

ปัญหาอุปสรรคหรือข้อเสนอแนะ

ตารางการประเมินผลคะแนนภาคปฏิบัติ

หัวข้อการพิจารณาภาคปฏิบัติ	ระดับคะแนน
การทดลองที่ 7.1 การควบคุมมอเตอร์ให้หมุนได้ทั้งซ้าย-ขวา โดยไม่การคุม	10 คะแนน
ความเร็วรอบ	
การทดลองที่ 7.2 การขับโหลดอุปกรณ์ไฟฟ้ากระแสสลับด้วยรีเลย์	10 คะแนน
รวมคะแนนภาคปฏิบัติ	คะแนน

แบบทดสอบหลังเรียน หน่วยที่ 7

เรื่อง การขับโหลดไฟฟ้ากระแสสูงและการเชื่อมต่ออุปกรณ์ภายนอกด้วย Arduino

เรื่อง การขับโหลดไฟฟ้ากระแสสูงและการเชื่อมต่ออุปกรณ์ภายนอกด้วย Arduino ใช้เวลา 20 นาที **วิชา** ไมโครคอนโทรลเลอร์เบื้องต้น รหัสวิชา (2127-2007) **ระดับชั้น** ประกาศนียบัตรวิชาซีพ (ปวช.) สาขาวิชา เมคคาทรอนิกส์ ******

<u>คำชี้แจง</u> 1. แบบทดสอบมีทั้งหมด 10 ข้อ (10 คะแนน)

- 2. ให้ผู้เรียนเลือกคำตอบที่ถูกที่สุดแล้วกาเครื่องหมายกากบาท (×) ลงในกระดาษคำตอบ
- 1. ไมโครคอนโทรลเลอร์สามารถจ่ายแรงดันและกระแสไฟฟ้าไป<u>ขับรีเลย์</u>ได้ประมาณเท่าใด
 - ก. +1 หรือ +5V 20mA
 - ข. +2 หรือ +5V 20mA
 - ค. +3 หรือ +5V 20mA
 - ง. +4 หรือ +5V 20mA
- 2. รีเลย์ทำหน้าที่
 - ก. โหมดการทำงานเป็น INPUT หรือ OUTPUT
 - ข. ใช้กำหนดขาเป็น INPUT
 - ค. กำหนดขาพอร์มีสถานะเป็นลอจิกสูงหรือลอจิกต่ำ
 - เป็นสวิตช์แรงดันและกระแสไฟฟ้าสูง
- 3. รีเลย์เป็นอุปกรณ์ที่ทำงานแบบใด
 - ก. แม่เหล็กไฟฟ้า
 - ข. กลไกทางกล
 - ค. สวิตซ์แรงเหวี่ยง
 - สวิตซ์แรงเหวี่ยงหนีศูนย์กลาง
- 4. หน้าสัมผัส (contact) ที่มีใช้ในรีเลย์เป็นแบบใด
 - ก. หน้าสัมผัสปกติปิด (Normally Closed:NC) และ ปกติเปิด (Normally Opened :NO)
 - ข. หน้าสัมผัสปกติปิด (Normally Closed:NC)
 - ค. หน้าสัมผัสปกติเปิด (Normally Opened :NO)
 - หน้าสัมผัสปกติ และผิดปกติ

5. คุณสมบัติรีเลย์ที่พิมพ์ลงบนตัวถังรีเลย์ว่า 10A 250VAC , 10A 125VAC หมายความว่าอย่างไร

- ก. ใช้กับไฟฟ้ากระแส<u>ตรง</u>ที่แรงดัน 125 ถึง 250 V. ทนกระแสไฟฟ้าได้ไม่เกิน 10 A.
- ข. ใช้กับไฟฟ้ากระแส<u>ตรง</u>ที่แรงดัน 125 ถึง 250 V. ทนกระแสไฟฟ้าได้เกิน 10 A.
- ค. ใช้กับไฟฟ้ากระแส<u>สลับ</u>ที่แรงดัน 125 ถึง 250 V. ทนกระแสไฟฟ้าได้ไม่เกิน 10 A.
- ง. ใช้กับไฟฟ้ากระแส<u>สลับ</u>ที่แรงดัน 125 ถึง 250 V. ทนกระแสไฟฟ้าได้เกิน 10 A.

6. อุปกรณ์ที่ทำหน้าที่จ่ายแรงดันและกระแสสูงโดยเฉพาะเรียกว่า

- ก. ไมโครคอนโทรลเลอร์
- ข. ออปแอมป์
- ค. OTA
- ง. ไดรเวอร์

7. การใช้ทรานซิสเตอร์ขับแบบเดี่ยว เบอร์ 2N3904 มีค่ากระแสคอลเล็กเตอร์สูงสุดถึง

- ก. 100mA
- ข. 200mA
- ค. 300MA
- 8. Relay Module 4 Channels มีเอาต์พุตคอนเน็คเตอร์อะไรบ้าง
 - ก. อ่านค่าข้อมูลที่ได้รับจากพอร์ต<u>ขนาน</u>
 - ข. อ่านค่าข้อมูลที่ได้รับจากพอร์ต<u>อนุกรม</u>
 - ค. NO/COM/NC
 - ง. สั่งงานด้วยระดับแรงดัน TTL
- 9. การใช้ไอซีขับเบอร์ ULN2003 ขับกระแสโหลดได้มากที่สุดเท่าใด
 - ก. 300 mA
 - ข. 400 mA
 - ค. 500 mA
 - থ. 600 mA
- 10. ULN2003 ป้องกันแรงดันย้อนกลับจากอุปกรณ์เอาต์พุตอย่างไร
 - ก. ต่อความต้านทาน
 - ข. ต่อตัวเก็บประจุ
 - ค. ต่อไดโอด
 - ง. ต่อทรานซิสเตอร์